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ABSTRACT
Optical Coherence Tomography (OCT) is a non-invasive tool

for visualizing the retina. It is increasingly used to diag-

nose eye diseases such as glaucoma and diabetic maculopa-

thy. However, diagnosis is only possible when the layers of

the retina can be easily distinguished, which is when the im-

ages are evenly illuminated. Automated OCT quality assess-

ment (i.e. signal strength) is only available for images as a

whole. In this work, we present an automated method for lo-
cal quality assessment. For training data, three OCT experts

label the quality of each individual a-scan line in 270 OCT

images. We extract features that are insensitive to pathol-

ogy, and employ a hierarchy of support vector machines and

histogram-based metrics. Our trained classifier is able to de-

termine not only when signal strength is low, but also when

it will affect doctors’ diagnostic ability. Our results improve

over the state of the art in OCT quality assessment.

Index Terms— Image quality assessment, optical coher-

ence tomography
1. INTRODUCTION

Optical Coherence Tomography (OCT) is a powerful tool for

imaging the retina in vivo [1]. It uses the properties of coher-

ent light interference to image at an axial resolution of about

8 microns. This allows for diagnosis and assessment of dis-

eases such as glaucoma and diabetic maculopathy. Since its

introduction in 1991, OCT has become increasingly popular

in hospitals around the world.

If an OCT image has low signal strength, then it is dif-

ficult to see the eye’s physiology, making correct diagnosis

difficult. Quality for whole images can be determined auto-

matically [2], but as seen in Fig. 1, sometimes only a portion

of the image is bad. In current clinical practice, an image is

discarded if even a small part is difficult to see. This means

that more images need to be taken, which is time consum-

ing for the doctor and troublesome for the patient. But if it

is known which sections are high or low quality, then only

the completely useless images would need to be discarded. It

might even be possible to create a composite from the good

parts of several images.

An OCT image is a collection of one dimensional depth

samples (a-scans). The reflectivity of the tissue at each depth

The first author performed this work while at Intel Research Pittsburgh

Fig. 1. The quality of OCT images can vary within a single

image. An image does not necessarily need to be discarded, if

only part of it is illegible. In this image, even though the left

part is low quality, the right part is excellent and all retinal

layers can be seen.

along the sample line is recorded. To facilitate interpretation,

a false color scheme is used for all images in this paper. From

highest to lowest tissue reflectivity, the colors are white, red,

yellow, green, blue, then black.

We propose a hierarchical support vector machine (SVM)

based method for computing the quality of individual a-scans.

The SVM is trained on data labeled by three experts. This au-

tomated quality estimation could potentially be used to guide

an image compositing or segmentation algorithm. Our results

show that this method outperforms the state of the art in OCT

quality assessment.

2. BACKGROUND AND RELATED WORK
In this paper, we are primarily concerned with quality in terms

of image intelligibility rather than fidelity [3]. In other words,

factors such as the brightness or level of noise are unimpor-

tant, unless they affect diagnostic accuracy.

Various factors affect OCT image quality. Somfai et al.

[4] discuss common causes of poor quality OCT images: de-

focus, depolarization, and improper centering. There can also

be more subtle problems with incorrect retinal thickness mea-

surements [5, 6, 7]. Since this type of poor quality cannot be

determined from a single image, it is not a component of our

automated quality assessment.

OCT machines assess quality of images as a whole, re-

porting overall signal to noise ratio and signal strength. Stein
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et al. [2] developed a more clinically accurate global qual-

ity assessment algorithm. In this paper, we will build off the

whole-image quality assessment of Stein et al., and determine

the quality of individual image regions.

3. EXPERT DATA LABELING
The goal of this paper is to determine image quality inde-

pendent of pathology. Therefore, instead of considering only

healthy subjects, we selected a mix of healthy and diseased

eyes. Thirty each have no glaucoma, early glaucoma, and

advanced glaucoma. The level of glaucoma was determined

with a Humphrey visual field glaucoma hemifield test, in-

traocular pressure, and the appearance of the optic nerve

head. The threshold to distinguish between early and ad-

vanced glaucoma was selected to be a mean deviation of -9

dB on the Humphrey visual field.

For each subject, we used one image each of the mac-

ula, optic nerve head (ONH), and a peripapillary circular scan

imaging the retinal nerve fiber layer (NFL). Three OCT ex-

perts each labeled the quality of every a-scan in all 90x3 im-

ages. As in [6, 7], we defined three levels of quality, excel-
lent, acceptable, and poor. For this study, quality refers to the

signal strength relative to the best possible, ignoring intrinsic

limitations of OCT. We wanted to determine the usefulness

of the image, independent of unavoidable artifacts. Four spe-

cific examples of unavoidable artifacts (shown in Fig. 2) are

shadowing, anything causing a wave or discontinuity in the

image (such as eye movement), pathology, and individual dif-

ferences. The experts would only label an image as poor if

there was low signal strength independent of these effects.

To determine intra-operator variability, each expert la-

beled 30 of the images twice. Ground truth is defined as the

mode of the three if it exists, otherwise it is the median across

experts. The difference between acceptable and excellent is

subtle. Therefore, to train and evaluate our algorithm, we

used the label good for both, reducing the problem to dif-

ferentiating between good and poor a-scans. The experts’

quality assessment is discussed in the results in Section 5.

4. ALGORITHM
We aim to determine the quality for each individual a-scan.

But often it is difficult to determine the quality of one with-

out looking at its neighbors. For example, a blood vessel can

create a shadow that make a small region appear to be of poor

quality, although the region looks fine in a larger context. To

prevent confusion due to such local effects, while still allow-

ing for per-line classification, a multi-scale analysis is used.

Features are extracted from various sized neighborhoods cen-

tered around a specific a-scan. The quality of each level of

the hierarchy is computed independently, then the estimates

are combined to yield a score that is both local and robust to

many types of variation.

4.1. Selecting Good Features

We begin by extracting features that are not affected by

common pathologies or eye movement. Pathology, such

(a) (b)

(c) (d)

(e)

Fig. 2. Since they are unavoidable, we ignore (a) dark areas

due to vessel shadowing, (b) waves in the image, (c) retinal

thickening, (d) any other eye pathology or shadowing, and (e)

individual differences.

as epiretinal membrane, macular holes, or cystoid macular

edema, cause variations that are independent of the skill of

the operator and the capabilities of the machine. Two of the

most common changes caused by pathology are thinning and

thickening of local areas. Thinning occurs when there are

a large number of cell deaths, as in glaucoma. In diabetic

maculopathy, fluid accumulates in the retinal tissue causing

thicker appearance. In addition, no matter how the images are

taken, cupping in the ONH and blood vessels create shadows,

which results in low reflectivity in local regions. Also, if

patients move their eyes during acquisition, then the resulting

images may appear discontinuous. And there is natural vari-

ation in the retinas structure between individuals, especially

in the ONH, but this is considered to be independent of the

images’ quality.

It would be possible to employ machine learning to find

features that are invariant to these effects, but as in many med-

ical imaging problems, data is scarce. A close examination of

the factors in Fig. 2 reveals that most of the variations are

types of translation. For example, in Fig. 2 (c), the thickening

is simply the separation of retinal layers. Therefore, we use

features that are robust to local translation, but still encode

much of the spatial structure. As is discussed in more detail

in Section 4.2, we independently consider neighborhoods of

between 1 and 256 a-scans, each with 1024 depth samples,

centered in a specific area, (i.e. we consider one scan, then

the one scan and its two neighbors on each side, then one

scan and its eight neighbors, etc). In order to run with reason-

able memory usage and execution time, we use the Quality
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(a) (b)

Fig. 3. Two examples of compression and centering. The

edema in (a) is removed without otherwise affecting the im-

age, while the low quality section in (b) is preserved.

Index (QI) score, which is known to linearly correlate with the

commercially available signal strength measure [2] for neigh-

borhoods of over five scans. Although not as accurate as the

SVM prediction on small neighborhood sizes, the QI gives a

good estimate with little computing time or memory usage.

Neighborhoods of under five a-scans are normalized. To

begin, we remove noise by setting all samples below per-

centile p to zero. As is commonly done for OCT images,

p = 75%. Next, we compress all non-zero samples together,

i.e. we move the first to the top of the image, the second to

the spot second from the top, etc. Lastly, the compressed sam-

ples are moved so that the mean location of the samples is in

the center of the image. This normalization removes variation

due to eye movement and retinal thickening. An example is

shown in Fig. 3.

4.2. Learning Quality

Each of the three scan types (macula, ONH, and NFL) is

trained and tested separately, with leave-one-image-out cross

validation (i.e. for 90 images, there are 90 trials). For each of

the three types, the quality of each neighborhood size is pre-

dicted independently, then combined to determine the final

score. When training, if the labeling of a given neighborhood

is inconsistent between experts, the most common value is

used. For testing, prediction accuracy is defined per a-scan,

so no additional processing is required to calculate accuracy.

For the 128x1024 Macula and ONH scans, neighborhoods

of [1, 5, 17, 65, 128] a-scans were used. For the 256x1024

NFL scans, [1, 5, 17, 65, 256] were used.

A SVM is trained separately on neighborhood sizes 1 and

5, using the features extracted in Section 4.1, with a radial ba-

sis function kernel. For each of the two SVMs, the probability

is calculated by fitting a sigmoid to a 3-fold cross-validation

of the training set [8]. For the QI scores, no probability is es-

timated, therefore P (ascan = good|bn) ∈ {0, 1}, where bn

is a neighborhood of n scans.

Given the small amount of data, it would be difficult to

poor acceptable excellent
poor

acceptable
excellent

poor acceptable excellent
poor

acceptable
excellent

poor acceptable excellent
poor

acceptable
excellent

Wollstein's Labeling

Ishikawa's Labeling

Schuman's Labeling

3-class repeatability: 94.57%

2-class repeatability: 94.57%

3-class repeatability: 87.00%

2-class repeatability: 96.05%

3-class repeatability: 79.37%

2-class repeatability: 93.52%

12.7 3.2 0.0
2.2 81.9 0.0
0.0 0.0 0.0

5.4 3.8 0.0
0.1 44.3 8.6
0.0 0.4 37.2

11.3 1.7 0.0
4.8 21.4 12.2
0.0 1.9 46.6

Fig. 4. Analysis of intra-operator variability. Each of the

three OCT experts labeled thirty images twice. The charts

show the difference between the two labellings. (For exam-

ple, Wollstein labeled 3.2% of the a-scans as acceptable in

the first trial and poor in the second). Repeatability is the per-

centage of a-scans that were given the same quality label both

times, for both three classes (excellent, acceptable, or poor)

and two classes (good or poor).

determine the full joint probability of all neighborhood sizes.

Instead, an independence assumption is made, giving

P (ascan = good|b1, b5, ...) =
∏

i

P (ascan = good|bi)

(1)

The probability is then used as a threshold to find the sensi-

tivity at different specificities.

5. EXPERIMENTAL RESULTS

In this section, we examine the experts’ labeling in more de-

tail and evaluate the accuracy of our algorithm. To determine

intra-operator variability, a set of thirty images was selected,

with ten images each of the macula, NFL, and ONH. The set

was selected to have approximately equal numbers of excel-

lent, acceptable, and poor quality images. Fig. 4 displays

the percentage of each quality class. If they were completely

consistent, then the diagonal would sum to 100%.

To determine inter-operator variability, we calculate each

expert’s accuracy at predicting the others’ labellings, shown

in Fig. 6. In this case, the two classes are good and poor. For

example, if one expert labeled an image as entirely poor, but

another labeled only half as good, then there would be 50%
agreement between them. We also include the mode estimate

and the results from our algorithm.

Fig. 5 shows ROC curves comparing our work to [2]. For

our algorithm, after a certain point, it takes a great deal of

false positives to increase the true positive rate. This is likely

due to inconsistent quality assignments in the ground truth.

Also note that the curves for [2] are fairly smooth. This is

likely because the QI does not generalize sufficiently.
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(b) Nerve Fiber Layer (NFL)
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Fig. 5. ROC curves and Area Under Curve (AOC) for prediction accuracy of our algorithm compared with Stein et al. [2].

Wollstein Ishikawa Schuman Mode Algorithm
Wollstein
Ishikawa
Schuman
Mode

Algorithm

− 93 94 97 93
93 − 92 95 95
94 92 − 97 92
97 95 97 − 95
93 95 92 95 −

Fig. 6. Confusion matrix for inter-operator variability, for

each of the three experts, their mode, and the algorithm pre-

sented in this paper. Shown is the percentage of scans labeled

the same, (e.g. Schuman was 94% consistent with Wollstein).

In all cases, the algorithm was trained on the mode.

6. CONCLUSION

We have presented an automatic algorithm that estimates the

local quality of OCT images, in a way that is insensitive

to pathology. We first train SVMs and use the QI metric

independently for different sized neighborhoods of a-scans,

then combine the individual estimates. This hierarchical

method is significantly more accurate than the state of the

art in OCT quality estimation. For future work, this method

can be extended to explicitly model pathology and individual

differences, and to work with volumetric measurements from

a spectral OCT. Accurate quality assessment will decrease

the time patients have to spend being imaged, reduce doc-

tors workload, and improve the accuracy of medical image

processing algorithms.
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